viernes, 9 de julio de 2010

clase virtual....
profesor Fernando Oliveros
alumno: David Munar Vasquez
Características y Propiedades (Útil de Corte).

Las herramientas de corte deben poseer como mínimo las siguientes características:
• Altamente resistentes al desgaste.
• Conservación de filos a altas temperaturas.
• Buenas propiedades de tenacidad.
• Reducido coeficiente de fricción.
• Alcance de altos niveles de recambio entre afilado y afilado.
• Alta resistencia a los choques térmicos.

GENERALIDADES DE LOS MATERIALES
Los materiales son las sustancias que componen cualquier cosa o producto .Desde el comienzo de la civilización, los materiales junto con la energía han sido utilizados por el hombre para mejorar su nivel de vida. Como los productos están fabricados a base de materiales , estos se encuentran en cualquier parte alrededor nuestro .Los mas comúnmente encontrados son madera , hormigón , ladrillo , acero , plástico , vidrio , caucho , aluminio , cobre y papel . Existen muchos mas tipos de materiales y uno solo tiene que mirar a su alrededor para darse cuenta de ello. Debido al progreso de los programas de investigación y desarrollo, se están creando continuamente nuevos materiales.
• La producción de nuevos materiales y el procesado de estos hasta convertirlos en productos acabados, constituyen una parte importante de nuestra economía actual. Los ingenieros diseñan


Metales Duros Recubiertos.
A finales de los años 60, surgen los metales duros con el recubrimiento de una finísima capa de carburo de titanio (TiC) de menos de 10 micrones (0.001 mm = 1?m), con la cual se incremento:
• La vida útil de la herramienta.
• Las velocidades de corte.
• La resistencia a la craterización al trabajar los aceros.
• La tolerancia a mayores temperaturas.
El recubrimiento consiste en depositar sobre el substrato (material de m por medio desoporte) capas que varían entre 2 y 12 sistemas que se conocen como CVD (Deposición química de vapor) con temperaturas de 1000° C y PVD (Deposición física de vapor), con temperaturas de
500° C.
Los principales recubrimientos son:
• Carburo de titanio (TiC), (apariencia: color gris).
• Nitruro de Titanio (TiN), (apariencia: color dorado).
• Carbo-nitruro de titanio (TiCN).
• Oxido de aluminio (Al2O3), (apariencia: transparente).




Designación de un Inserto.
Para designar un inserto, existe una Norma ISO 1832 – 1991, en la cual se dan los códigos correspondientes a nueve (9) posiciones que hacen referencia a:
• Forma del inserto o plaquita.
• Angulo de incidencia del inserto.
• Tolerancias dimensionales del inserto.
• Tipo del inserto.
• Longitud del filo de corte.
• Espesor (grosor) del inserto.
• Filos secundarios del inserto y radio(sólo radio para los insertos de tornear).
• Tipo de arista de corte.
• Dirección de avance del inserto.
En la actualidad (1998), se está estudiando esta la modificación de la Norma, pues, el desarrollo de nuevos materiales de corte hace que ésta se quede corta.
A continuación se describen gráficamente las posiciones de la designación de un inserto.
Cermets – Metal Duro.
Cermet: Cerámica y metal (partículas de cerámica en un aglomerante metálico). Se denominan así las herramientas de metal duro en las cuales las partículas duras son carburo de titanio (TiC) o carburo de nitruro de titanio (TiCN) o bien nitruro de titanio (TiN), en lugar del carburo de tungsteno (WC). En otras palabras los cermets son metales duros de origen en el titanio, en vez de carburo de tungsteno.
Algunas propiedades de los cermets son:
• Mayor tenacidad que los metales duros.
• Excelente para dar acabado superficial.
• Alta resistencia al desgaste en incidencia y craterización.
• Alta estabilidad química.
• Resistencia al calor.
• Mínima tendencia a formar filo por aportación.
• Alta resistencia al desgaste por oxidación.
• Mayor capacidad para trabajar a altas velocidades de corte.
Básicamente el cermet esta orientado a trabajos de acabado y semiacabado, por lo tanto en operaciones de desbaste y semidesbaste presenta las siguientes anomalías:
• Menor resistencia al desgaste a media nos y grandes avances.
• Menor tenacidad con cargas medias y grandes.
• Menor resistencia al desgaste por abrasión.
• Menor resistencia de la arista de corte a la melladura debido al desgaste mecánico.
• Menor resistencia a cargas intermitentes.
• Además no son adecuados para operaciones de perfilado.






Valores de los Ángulos de Incidencia y Salida de Viruta.
En el afiliado de las herramientas de corte simple o monofilo de acero al carbono (prácticamente ya no se usa en la industria metalmecánica) y de acero rápido (acero de alta velocidad, HSS high speed steel), es necesario controlar los ángulos de incidencia y de salida de viruta (desprendimiento), de acuerdo con el material que se vaya a mecanizar. Estos valores son recomendaciones de las casas fabricantes y cumplen una función orientativa.
En el cuadro siguiente se presentan algunos valores de herramientas de acero rápido y de metal duro, con el ánimo de diferenciar sus valores.

Designación de una Herramienta Monofilo.
En la designación de una herramienta monofilo se debe indicar lo siguiente:
Tipo de la Herramienta: Es el número de referencia ISO.
Sentido de Corte: L (left) a izquierdas, R (right) a derechas.
Dimensión del Mango: Q sección cuadrada.
H sección rectangular. Altura solamente
R sección redonda.
Calidad: R1: Acero al carbono.
R2: Acero rápido ordinario.
R3: Acero rápido superior.
R4: Acero extra rápido.


Ángulo de Salida de Viruta: Valor en grados.
Ejemplo: una herramienta con la designación: 401-L-30H-R3-15°, significa lo siguiente:
401: Herramienta de cilindrar recta.
L: Corte a izquierdas.
30H: Sección rectangular. 30 mm de altura.
R3: Acero rápido superior.
15°: Angulo de salida de viruta positivo a 15°.
Stelitas.
Con base en el acero rápido, se experimento con mayores contenidos de Co y Cr, y pasando el Fe a ser impureza propia del proceso de producción y no admitir tratamiento térmico.
Su composición química es aproximadamente la siguiente:
C = 2 % Co = 47 % Cr = 29 % W =16 % Si = 0.2 % Mn =0.6 % Fe = 5.2 %.
Alcanza temperaturas límites de 800° C. y posee una dureza de 65-70 HRC.

Carburos Metálicos o Metales Duros (HM).
También conocidos como METAL DURO (Hard Metal - HM), se desarrolló hacia 1920, con base en los carburos de tántalo (TaC), carburo de titanio (TiC) y carburo de wolframio (WC), los cuales eran unidos por medio del Co y el Ni, previamente molidos (polvos metalúrgicos), la cohesión se obtiene por el proceso de sinterizado o fritado (proceso de calentar y aplicar grandes presiones hasta el punto de fusión de los componentes, en hornos eléctricos).
Los metales duros, se pueden clasificar desde su composición química así:
Mono carburos: Su composición es uno de los carburos descritos anteriormente, y su aglutinante es el Co. Ejemplo: WC, es carburo de wolframio (carburo de tungsteno, comercialmente).
Bicarburos: En su composición entran sólo dos clases de granos de carburos diferentes, el Co es el aglomerante básico. Ejemplo:WC +TiC con liga de Co.
Tricarburos: En su composición entran las tres clases de granos de carburos: W, Ti, y Ta. El Co, o el Ni son los aglomerantes. Ejemplo: WC +TiC + TaC; con liga de Co.
Algunas características:
• El carburo metálico, es una aleación muy dura y frágil.
• El TiC aumenta su resistencia térmica y su resistencia al desgaste pero también aumenta su fragilidad.
• Los bicarburos poseen menor coeficiente de fricción que los monocarburos.
• Los monocarburos son menos frágiles que los bicarburos.
• El cobalto, aumenta la ductilidad pero disminuye la dureza y la resistencia al desgaste.
• Se pueden alcanzar velocidades de más de 2500 m/min.
• Poseen una dureza de 82-92 HRA y una resistencia térmica de 900-1100° C.
• En el mecanizado se debe controlar lo mejor que se pueda la temperatura, pues, en el mecanizado de aceros corrientes la viruta se adhiere a los monocarburos a temperatura de 625-750° C. y en los bicarburos a una temperatura de 775-875° C. Esto implica buena refrigeración en el mecanizado.
Las herramientas de HM, se fabrican en geometrías variadas y pequeñas, el cual se une al vástago o cuerpo de la herramienta a través de soldadura básicamente, existiendo otros medios mecánicos como tornillos o pisadores.

Aceros Rápidos (HS’)
Hacia 1898, Taylor, encontró que los aceros aleados de corte, con un porcentaje igual o mayor al 5% de wolframio (tungsteno), al recibir un tratamiento térmico su rendimiento se incrementaba considerablemente. Esto dio origen al acero rápido.
En 1906, Taylor, observó que el acero rápido al contener un 19% de W, podía soportar temperaturas críticas hasta de 650°C, el cobalto permite incrementar la resistencia a la temperatura, el W, Mo, y Cr elevan la dureza y la resistencia al desgaste; el Cr, facilita el temple y reduce la oxidación en caliente; el Mo, disminuye la fragilidad después del revenido.
Norma. ISO.
Descripción
401 Herramienta de cilindrada recta.
402 Herramienta de cilindrar acodada.
403 Herramienta de refrentar en ángulo.
404 Herramienta de ranurar.
406 Herramienta de refrentar de costado.
407 Herramienta de tronzar.
408 Herramienta de cilindrar interiormente.
409 Herramienta de refrentar en ángulo interior.
451Herramienta de corte en punta.
452 Herramienta de filetear.
453 Herramienta de filetear interiormente.
454 Herramienta de cajear interiormente.
Carburos cementados:
Tienen carburos metálicos como ingredientes básicos y se fabrican con técnicas de metalurgia de polvos. Las puntas afiladas con sujetadores mecánicas se llaman insertos ajustables, se encuentran en diferentes formas, como cuadrados, triángulos, circulares y diversas formas especiales.
Hay tres grupos:
• Carburo de tungsteno aglutinado con cobalto, que se emplea para maquinar hierros fundidos y metales abrasivas ferrosos
• Carburo de tungsteno con aglutinante de cobalto más una solución sólida, para maquinar en aceros.
• Carburos de titanio con aglutinante de níquel y molibdeno, para cortar en donde hay altas temperaturas debido alas altas velocidades de corte o a la alta resistencia mecánica del material de la pieza de trabajo.


Carburos revestidos:
Con insertos normales de carburo revestidos con una capa delgada de carburo de titanio, nitruro de titanio u óxido de aluminio. Con el revestimiento se obtiene resistencia adicional al desgaste a la vez que se mantienen la resistencia mecánica y la tenacidad de la herramienta de carburo.




Nitruro Cúbico de Boro (CBN).
También conocido como CBN, es después del diamante el más duro, posee además una elevada dureza en caliente hasta 2000° C, tiene también una excelente estabilidad química durante el mecanizado, es un material de corte relativamente frágil, pero es más tenaz que las cerámicas.
Su mayor aplicación es en el torneado de piezas duras que anteriormente se rectificaban como los aceros forjados, aceros y fundiciones endurecidas, piezas con superficies endurecidas, metales pulvimetalúrgicos con cobalto y hierro, rodillos de laminación de fundición perlítica y aleaciones de alta resistencia al calor, redondeando se emplea en materiales con una dureza superior a los 48 HRC, pues, si las piezas son blandas se genera un excesivo desgaste de la herramienta.
El nitruro cúbico de boro se fabrica a gran presión y temperatura con el fin de unir los cristales de boro cúbico con un aglutinante cerámico o metálico.


Diamante Policristalino (PCD).
La tabla de durezas de Friedrich Mohs determina como el material más duro al diamante monocristalino, a continuación se puede considerar al diamante policristalino sintético (PCD), su gran dureza se manifiesta en su elevada resistencia al desgaste por abrasión por lo que se le utiliza en la fabricación de muelas abrasivas.
Las pequeñas plaquitas de PCD, son soldadas a placas de metal duro con el fin de obtener fuerza y resistencia a los choques, la vida útil del PCD puede llegar a ser 100 veces mayor que la del metal duro.
Los puntos débiles del PCD son básicamente los siguientes:
• La temperatura en la zona de corte no puede ser mayor a 600° C.
• No se puede aplicar en materiales ferrosos debido a su afinidad.
• No se puede aplicar en materiales tenaces y de elevada resistencia a la tracción.
• Exige condiciones muy estables.
• Herramientas rígidas.
• Máquinas con grandes velocidades.
• Evitar los cortes interrumpidos.
• Usar bajas velocidades de avance.
• Mecanizar con profundidades de corte pequeñas.
Las operaciones típicas son el acabado y semiacabado de superficies en torno usando el mayor rango posible (sección del portainserto) y el menor voladizo.

En mineralogía, el diamante : es el alótropo del carbono donde los átomos de carbono están dispuestos en una variante de la estructura cristalina cúbica centrada en la cara denominada red de diamante. El diamante es la segunda forma más estable de carbono, después del grafito; sin embargo, la tasa de conversión de diamante a grafito es despreciable a condiciones ambientales. El diamante tiene renombre específicamente como un material con características físicas superlativas, muchas de las cuales derivan del fuerte enlace covalente entre sus átomos. En particular, el diamante tiene la más alta dureza y conductividad térmica de todos los materiales comunes. Estas propiedades determinan que la aplicación industrial principal del diamante sea en herramientas de corte y de pulido.
El diamante tiene características ópticas destacables. Debido a su estructura cristalina extremadamente rígida, puede ser contaminada por pocos tipos de impurezas, como el boro y el nitrógeno. Combinado con su gran transparencia (correspondiente a una amplia banda prohibida de 5,5 eV), esto resulta en la apariencia clara e incolora de la mayoría de diamantes naturales. Pequeñas cantidades de defectos o impurezas (aproximadamente una parte por millón) inducen un color de diamante azul (boro), amarillo (nitrógeno), marrón (defectos cristalinos), verde, violeta, rosado, negro, naranja o rojo. El diamante también tiene una dispersión refractiva relativamente alta, esto es, habilidad para dispersar luz de diferentes colores, lo que resulta en su lustre característico. Sus propiedades ópticas y mecánicas excelentes, combinado con una mercadotecnia eficiente, hacen que el diamante sea la gema más popular.
La mayoría de diamantes naturales se forman a condiciones de presión alta y temperatura alta, existentes a profundidades de 140 km a 190 km en el manto terrestre. Los minerales que contienen carbono proveen la fuente de carbono, y el crecimiento tiene lugar en períodos de 1 a 3,3 mil millones de años, lo que corresponde a, aproximadamente, el 25% a 75% de la edad de la Tierra. Los diamantes son llevados cerca a la superficie de la Tierra a través de erupciones volcánicas profundas por un magma, que se enfría en rocas ígneas conocidas como kimberlitas y lamproitas. Los diamantes también pueden ser producidos sintéticamente en un proceso de alta presión y alta temperatura que simula aproximadamente las condiciones en el manto de la Tierra. Una alternativa, y técnica completamente diferente, es la deposición química de vapor. Algunos materiales distintos al diamante, incluyendo a la zirconia cúbica y carburo de silicio son denominados frecuentemente como simulantes de diamantes, semejando al diamante en apariencia y muchas propiedades. Se han desarrollado técnicas gemológicas especiales para distinguir los diamantes sintéticos y los naturales, y simulantes de diamantes.

No hay comentarios:

Publicar un comentario